93,270 research outputs found

    Brane bounce-type configurations in a string-like scenario

    Get PDF
    Brane world six dimensional scenarios with string like metric has been proposed to alleviate the problem of field localization. However, these models have been suffering from some drawbacks related with energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a model where a brane is made of a scalar field with bounce-type configurations and embedded in a bulk with a string-like metric. This model produces a sound AdS scenario where none of the important physical quantities is infinite. Among these quantities are the components of the energy momentum tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another advantage of this model is that the warp factor can be obtained analytically from the equations of motion for the scalar field, obtaining as a result a thick brane configuration, in a six dimensional context. Moreover, the study of the scalar field localization in these scenario is done.Comment: 15 pages, 5 figures. To appear in Physics Letters

    A note on black hole entropy, area spectrum, and evaporation

    Full text link
    We argue that a process where a fuzzy space splits in two others can be used to explain the origin of the black hole entropy, and why a "generalized second law of thermodynamics" appears to hold in the presence of black holes. We reach the Bekenstein-Hawking formula from the count of the microstates of a black hole modeled by a fuzzy space. In this approach, a discrete area spectrum for the black hole, which becomes increasingly spaced as the black hole approaches the Planck scale, is obtained. We show that, as a consequence of this, the black hole radiation becomes less and less entropic as the black hole evaporates, in a way that some information about its initial state could be recovered.Comment: 4 pages, 2 figure

    Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant

    Full text link
    We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017), as well by the planned high-resolution spectrograph (currently in Phase A) for the European Extremely Large Telescope. Assuming a fiducial model without α\alpha variations, we show that ESPRESSO can improve current bounds on the E\"{o}tv\"{o}s parameter---which quantifies Weak Equivalence Principle violations---by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α\alpha variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.Comment: Phys. Lett. B (in press

    Spontaneous CP violation in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the mechanism of spontaneous CP violation in the 3-3-1 model with right-handed neutrinos and recognize their sources of CP violation. Our main result is that the mechanism works already in the minimal version of the model and new sources of CP violation emerges as an effect of new physics at energies higher than the electroweak scale.Comment: Major changes in the quark sector, electronic dipole moment of the neutron was evaluated, accepted for publication in the physical review
    corecore